• "Spreading the ideas of freedom loving people on matters regarding metals, finance, politics, government and many other topics"

full of gas

Scorpio

для продажи слегка подержанный
Founding Member
Board Elder
GIM Hall Of Fame
Joined
Mar 25, 2010
Messages
33,659
Reaction score
55,214
yeah, the gasbag scientists have yet another delusion for you to ponder and believe



Earth is at the center of a 1,000-light-year-wide 'Swiss cheese' bubble carved out by supernovas​

By Harry Baker published about 10 hours ago
The cosmic void is surrounded by multiple star-forming regions created by the explosions.



Artist's illustration of the Local Bubble with the sun's location in the center and star formation occurring on the bubble's surface.


Artist's illustration of the Local Bubble with the sun's location in the center and star formation occurring on the bubble's surface. (Image credit: Leah Hustak (STScI))

Earth is slap bang in the middle of a 1,000 light-year-wide bubble with a dense surface birthing thousands of baby stars. Researchers have long wondered what created this "superbubble." Now, a new study suggests that at least 15 powerful star explosions inflated this cosmic bubble.
Astronomers in the 1970s first discovered the gigantic void, known as the Local Bubble, after realizing that no stars had formed inside the blob for around 14 million years. The only stars inside the bubble either existed before the bubble emerged or formed outside the void and are now passing through; the sun is one such trespasser. This setup had suggested that several supernovas were responsible for this void. Those stellar explosions, the researchers said, would have blasted the materials needed to make new stars, such as hydrogen gas, to the edge of a huge area in space, leaving behind the Local Bubble that's surrounded by a frenzy of star births.
In the new study, published online Jan. 12 in the journal Nature, researchers accurately mapped the star-forming regions surrounding the Local Bubble and, in doing so, calculated how fast the superbubble is expanding. This allowed the team to work out exactly how many supernovas were needed to carve out the gigantic cosmic void and better understand how star-forming regions are created across the Milky Way.


"By tracing back the positions and motions of nearby young stars over the past millennia, we have reconstructed the history of our galactic neighborhood," lead researcher Catherine Zucker, a NASA Hubble fellow at the Space Telescope Science Institute in Maryland, told Live Science.

Expanding bubble​

The Local Bubble is not a uniform sphere, because it was not formed by a single explosion. Instead, it is more like a lumpy blob created by multiple supernovas.
"Powerful supernova explosions triggered an expanding shock wave, sweeping up interstellar clouds of gas and dust into a dense shell that now forms the surface of the Local Bubble," Zucker said. The shock wave continues to push the surface outward, causing the bubble to expand.
The researchers used data obtained by the European Space Agency's Gaia space observatory to create a 3D map of the Local Bubble's surface and to calculate the trajectory of the seven main star-forming regions that make up the "skin" of the bubble. The observations also allowed the researchers to work out how fast the cosmic void is expanding, which is currently around 4 miles per second (6.4 kilometers per second), according to a statement by researchers.
"We were able to figure out how much momentum is currently in the Local Bubble's expanding surface and compare it to how much momentum must have been injected by the supernovae to power its expansion," Zucker said. "We figured out that 15 supernovae were required to power the expansion given the shell's current momentum," which matches previous estimates made by similar studies. These supernovas likely originated from two separate star clusters over a period of millions of years, Zucker added.

An artist's impression of what an exploding star, or supernova, might look like.


An artist's impression of what an exploding star, or supernova, might look like. (Image credit: Shutterstock)

"Swiss cheese" bubbles​

The findings help to further our understanding of how star-forming regions are created.
"Astronomers have theorized for many decades that supernovae can sweep up gas into dense clouds that ultimately form new stars," Zucker said, "but our work provides the strongest observational evidence to date in support of this theory."
The Earth is currently located right at the heart of the Local Bubble, but that's not what makes this location special, Zucker said. "It is by chance that the sun is centered inside the bubble," she added; The sun was about 1,000 light-years away when the bubble first started forming and entered it only 5 million years ago.
According to the Copernican principle, which states that humans are not privileged observers of the universe and that Earth has no "special" location in the galaxy, our planet's position inside the Local Bubble suggests that superbubbles are likely very common throughout the Milky Way, Zucker said.
"We think that these bubbles are interacting with each other, with star-forming regions being at bubble intersections," Zucker said.
The Milky Way, therefore, "resembles very holey Swiss cheese, where holes in the cheese are blasted out by supernovae, and new stars can form in the cheese around the holes created by dying stars," co-author Alyssa Goodman, an astronomer at Harvard University, explained in the statement.

Passing through​

The solar system won't always be stuck inside this bubble, the team found. "The sun should exit the bubble in about 8 million years," Zucker said. "But at that point, the bubble may no longer exist."
The Local Bubble's expansion is believed to be slowing down and will eventually disappear after reaching its max size, Zucker said.


"The Local Bubble is at the later stages of its life and will not continue to expand forever, and has actually plateaued in terms of its expansion speed," Zucker said. "Eventually, the Local Bubble will slow down enough that it merges with the general ambient gas of its surrounding environment."
Originally published on Live Science.
Harry Baker

Harry Baker
Staff Writer
Harry is a U.K.-based staff writer at Live Science. He studied Marine Biology at the University of Exeter (Penryn campus) and after graduating started his own blog site "Marine Madness," which he continues to run with other ocean enthusiasts. He is also interested in evolution, climate change, robots, space exploration, environmental conservation and anything that's been fossilized. When not at work he can be found watching sci-fi films, playing old Pokemon games or running (probably slower than he'd like).

 

Scorpio

для продажи слегка подержанный
Founding Member
Board Elder
GIM Hall Of Fame
Joined
Mar 25, 2010
Messages
33,659
Reaction score
55,214
An artist's impression of what an exploding star, or supernova, might look like. (Image credit: Shutterstock)


too funny

a artists impression

I wonder why 'ole Pablo never bothered himself with such highbrow work?

I also wonder when they are going to be looking for dangling participles so they can assign a gender to each of these?
 

Uglytruth

Super Moderator
Mother Lode
Midas Supporter ++
Survivor
Joined
Apr 6, 2011
Messages
18,931
Reaction score
45,335
QUICK! Send them more money so they can study it more.
 

Scorpio

для продажи слегка подержанный
Founding Member
Board Elder
GIM Hall Of Fame
Joined
Mar 25, 2010
Messages
33,659
Reaction score
55,214

chieftain

Trump got them plump
Gold Chaser
Joined
Jan 4, 2020
Messages
5,191
Reaction score
8,778
Damn, if they want gas, they should come around to my place after Friday night dinner.
 

TAEZZAR

LADY JUSTICE ISNT BLIND, SHES JUST AFRAID TO WATCH
Midas Member
Sr Midas Sup +++
GIM Hall Of Fame
Survivor
Joined
Apr 2, 2010
Messages
24,113
Reaction score
51,042
Location
ORYGUN
In the new study, published online Jan. 12 in the journal Nature, researchers accurately mapped the star-forming regions surrounding the Local Bubble and, in doing so, calculated how fast the superbubble is expanding. This allowed the team to work out exactly how many supernovas were needed to carve out the gigantic cosmic void and better understand how star-forming regions are created across the Milky Way.

If bullschiff was music, this moron would be the New York Philharmonic, Symphony Orchestra !!! :trolls:
 

the_shootist

Mother Lode Found
Sr Midas Sup +++
Mother Lode
Joined
May 31, 2015
Messages
73,511
Reaction score
157,203
yeah, the gasbag scientists have yet another delusion for you to ponder and believe



Earth is at the center of a 1,000-light-year-wide 'Swiss cheese' bubble carved out by supernovas​

By Harry Baker published about 10 hours ago
The cosmic void is surrounded by multiple star-forming regions created by the explosions.


Artist's illustration of the Local Bubble with the sun's location in the center and star formation occurring on the bubble's surface.'s illustration of the Local Bubble with the sun's location in the center and star formation occurring on the bubble's surface.
Artist's illustration of the Local Bubble with the sun's location in the center and star formation occurring on the bubble's surface. (Image credit: Leah Hustak (STScI))
Earth is slap bang in the middle of a 1,000 light-year-wide bubble with a dense surface birthing thousands of baby stars. Researchers have long wondered what created this "superbubble." Now, a new study suggests that at least 15 powerful star explosions inflated this cosmic bubble.
Astronomers in the 1970s first discovered the gigantic void, known as the Local Bubble, after realizing that no stars had formed inside the blob for around 14 million years. The only stars inside the bubble either existed before the bubble emerged or formed outside the void and are now passing through; the sun is one such trespasser. This setup had suggested that several supernovas were responsible for this void. Those stellar explosions, the researchers said, would have blasted the materials needed to make new stars, such as hydrogen gas, to the edge of a huge area in space, leaving behind the Local Bubble that's surrounded by a frenzy of star births.
In the new study, published online Jan. 12 in the journal Nature, researchers accurately mapped the star-forming regions surrounding the Local Bubble and, in doing so, calculated how fast the superbubble is expanding. This allowed the team to work out exactly how many supernovas were needed to carve out the gigantic cosmic void and better understand how star-forming regions are created across the Milky Way.


"By tracing back the positions and motions of nearby young stars over the past millennia, we have reconstructed the history of our galactic neighborhood," lead researcher Catherine Zucker, a NASA Hubble fellow at the Space Telescope Science Institute in Maryland, told Live Science.

Expanding bubble​

The Local Bubble is not a uniform sphere, because it was not formed by a single explosion. Instead, it is more like a lumpy blob created by multiple supernovas.
"Powerful supernova explosions triggered an expanding shock wave, sweeping up interstellar clouds of gas and dust into a dense shell that now forms the surface of the Local Bubble," Zucker said. The shock wave continues to push the surface outward, causing the bubble to expand.
The researchers used data obtained by the European Space Agency's Gaia space observatory to create a 3D map of the Local Bubble's surface and to calculate the trajectory of the seven main star-forming regions that make up the "skin" of the bubble. The observations also allowed the researchers to work out how fast the cosmic void is expanding, which is currently around 4 miles per second (6.4 kilometers per second), according to a statement by researchers.
"We were able to figure out how much momentum is currently in the Local Bubble's expanding surface and compare it to how much momentum must have been injected by the supernovae to power its expansion," Zucker said. "We figured out that 15 supernovae were required to power the expansion given the shell's current momentum," which matches previous estimates made by similar studies. These supernovas likely originated from two separate star clusters over a period of millions of years, Zucker added.
An artist's impression of what an exploding star, or supernova, might look like.'s impression of what an exploding star, or supernova, might look like.
An artist's impression of what an exploding star, or supernova, might look like. (Image credit: Shutterstock)

"Swiss cheese" bubbles​

The findings help to further our understanding of how star-forming regions are created.
"Astronomers have theorized for many decades that supernovae can sweep up gas into dense clouds that ultimately form new stars," Zucker said, "but our work provides the strongest observational evidence to date in support of this theory."
The Earth is currently located right at the heart of the Local Bubble, but that's not what makes this location special, Zucker said. "It is by chance that the sun is centered inside the bubble," she added; The sun was about 1,000 light-years away when the bubble first started forming and entered it only 5 million years ago.
According to the Copernican principle, which states that humans are not privileged observers of the universe and that Earth has no "special" location in the galaxy, our planet's position inside the Local Bubble suggests that superbubbles are likely very common throughout the Milky Way, Zucker said.
"We think that these bubbles are interacting with each other, with star-forming regions being at bubble intersections," Zucker said.
The Milky Way, therefore, "resembles very holey Swiss cheese, where holes in the cheese are blasted out by supernovae, and new stars can form in the cheese around the holes created by dying stars," co-author Alyssa Goodman, an astronomer at Harvard University, explained in the statement.

Passing through​

The solar system won't always be stuck inside this bubble, the team found. "The sun should exit the bubble in about 8 million years," Zucker said. "But at that point, the bubble may no longer exist."
The Local Bubble's expansion is believed to be slowing down and will eventually disappear after reaching its max size, Zucker said.


"The Local Bubble is at the later stages of its life and will not continue to expand forever, and has actually plateaued in terms of its expansion speed," Zucker said. "Eventually, the Local Bubble will slow down enough that it merges with the general ambient gas of its surrounding environment."
Originally published on Live Science.
Harry Baker

Harry Baker
Staff Writer
Harry is a U.K.-based staff writer at Live Science. He studied Marine Biology at the University of Exeter (Penryn campus) and after graduating started his own blog site "Marine Madness," which he continues to run with other ocean enthusiasts. He is also interested in evolution, climate change, robots, space exploration, environmental conservation and anything that's been fossilized. When not at work he can be found watching sci-fi films, playing old Pokemon games or running (probably slower than he'd like).

stop-stop-im-gonna-pee-13855639.png
 

Goldhedge

Retired
Midas Supporter ++
GIM Hall Of Fame
Survivor
Joined
Mar 28, 2010
Messages
65,058
Reaction score
141,764
Location
Rocky Mountains
Well, I don't know about you mugs... but I'm glad they finally figured it out.

Now I can sleep better at night....
 

Son of Gloin

Certainty of death? What are we waiting for?
Midas Member
Midas Supporter ++
GIM Hall Of Fame
Joined
Apr 6, 2010
Messages
9,840
Reaction score
24,531
Location
USA

MrLucky

Gold Member
Gold Chaser
Sr Site Supporter
Survivor
Joined
Apr 27, 2011
Messages
2,564
Reaction score
3,788
Location
Rock <me> Hard-Place
I can think of something they might be full of, but gas doesn't come to mind.